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Abstract
Self-diffusion coefficients of a metastable Lennard-Jones vapor were obtained using the
memory function formalism and the frequency moments of the velocity autocorrelation
function at reduced temperatures from 0.75 to 1.0. The radial density distribution functions
used to evaluate the second, fourth and sixth frequency moments of the velocity autocorrelation
function were obtained from the restricted canonical ensemble Monte Carlo simulation
(Corti and Debenedetti 1994 Chem. Eng. Sci. 49 2717). The self-diffusion coefficients at
reduced temperature 0.75 do not vary monotonically as the density increases, and for the other
three temperatures the self-diffusion coefficients vary normally.

1. Introduction

Numerous efforts have investigated static properties of the
metastable Lennard-Jones (LJ) fluid such as the free energy
barrier to the formation of liquid-like clusters [1–7] and ther-
mal properties such as pressure [8], free energy and chemical
potential [9], heat capacity [10] and so on. However, dynamic
properties such as self-diffusion constant, shear viscosity and
thermal conductivity are seldom treated. Because the atoms
or molecules form clusters in the metastable fluid and these
clusters may form or disappear instantaneously, the dynamic
properties are expected to be different from the uniform fluid.
Moreover, the inhomogeneity property of the metastable fluid
provides a good prototype of the hotspot nanofluid, where the
densely populated phase and dilute populated phase exist. It is
still hotly debated why and how the atoms or molecules diffuse
and transfer heat in the inhomogeneous surroundings from
either experimental or theoretical sides [11–15]. Therefore,
exploring the dynamical properties of the metastable fluid may
shed some light on this debate.

Currently, the most widely used method to evaluate
the self-diffusion coefficients of fluids is molecular dynamic
simulations [16–19], in which the velocity autocorrelation
function is recorded and averaged. After integrating the veloc-
ity autocorrelation function, the self-diffusion coefficients are
obtained. However, it is hard to perform molecular dynamic
simulations in a metastable fluid, in which density fluctuations

may lead to phase separation. If the density fluctuation is large
enough the system will go to phase separation, but prevention
of phase separation may destroy the trajectory evolution; thus,
it is not that easy to perform molecular dynamic simulations in
such systems. In [8], the authors developed an MD simulation
method to study the thermal properties of the supersaturated
vapor up to spinodal density at different temperatures. They
averaged the thermal properties before the system goes to
phase separation and used the instantaneous pressure, the
numbers of atoms in the largest cluster, and the number of
atoms not belonging to any cluster as the indication of phase
separation. Their work shows that a reasonably long time
interval is required to avoid phase separation. However, they
did not use the method they developed to explore the dynamic
properties of the metastable fluid and the robustness of their
method to measure the dynamic properties of the metastable
fluids remains to be validated. For these purposes, a large
number of particles is required to perform the molecular
dynamic simulations and we are not aware of any other similar
work that has been used to investigate the dynamic properties
of metastable fluids.

Besides the molecular dynamic simulation method, it is
interesting to note that the dynamic thermal properties can
also be approximated via static properties, the radial density
distribution functions. Rah and Eu [20] proposed an algorithm
to evaluate the self-diffusion constant via the free volume
theory, where the free volume may be derived from the so
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called generic van der Waals equation [21]. The advantage of
the method is that after obtaining the self-diffusion coefficients
the other dynamic quantities may also be evaluated by some
manipulations of the self-diffusion constant itself and radial
density distribution functions. Tankeshwar et al [22] developed
a method to calculate the diffusion coefficients of LJ fluid
over a wide range of densities and temperatures by applying
a new phenomenological form of the memory function of the
velocity autocorrelation function and its frequency moments.
The results of this work were reported to correspond well to
existing molecular dynamic simulation results [18, 19]. In this
work we directly adopt the formula developed by this group
to compute the self-diffusion coefficients of the metastable
LJ fluid.

2. Methods and simulations

The radial density distribution functions are obtained from the
restricted canonical ensemble Monte Carlo simulation [9]. In
this work, the vapor is modeled by simulations with Lennard-
Jones model interactions for atoms,

u(r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

. (1)

First, divide the system into subcells based on the number
of atoms and density of the system studied. The length of the
cubic subcell is taken with the following relations.

l = L

N ( 1
3 )

(2)

where L is the length of an edge of the simulation box and N
is the total number of particles during simulation. Therefore,
the ideal homogeneous case should correspond to one atom
per cell. However, density fluctuations exist, and limiting
the maximum number of atoms in each subcell may help to
maintain the one phase state for the system studied. For a given
density, a series run starts from the maximum density dmax,
when no number limitation is imposed on the subcell, to d2,
when only two atoms in one subcell are allowed; otherwise,
the trial movement of a selected atom will be rejected. With
all constraints applied to the system studied, the one with the
local minimum free energy is chosen to be the approximated
equilibrium state of the metastable fluid and the radial density
distribution function is recorded and averaged. For each run,
the excess chemical potential and pressure are averaged and
recorded. With the obtained excess chemical potential and
pressure, the excess free energy can be computed with the
following formula:

f ex = μex − Pex/ρ (3)

where f ex is the excess free energy per particle, μex is the
excess chemical potential and Pex is the excess pressure of the
system with respect to the ideal case. In this work, initially,
all the atoms were placed on a simple cubic lattice. For all
simulations, the system was set to at least 40σ . The number
of steps to reach equilibrium is 10 × 106 moves, and another
200 × 106 moves were used to sample the phase space. The

cut-off distance is set to be 8.0σ , and beyond the cut-off
distance standard long range corrections were employed. The
simulations are carried out at T ∗ = 0.75, 0.8, 0.9 and 1.0,
where T ∗ = kT/ε. For T ∗ = 0.75 and 0.8 the number of
particles involved in the simulation is 3375, and for T ∗ = 0.9
and 1.0 the number of particles involved in the simulation is
5832 and 6859 respectively. The excess chemical potential is
measured by performing brute force sampling of exp(−βu),
the energy increase brought by the insertion of a test atom. To
see the original idea of the atom insertion method, the reader
may go to [23]; our program is based on classical textbooks on
molecular simulation [16, 17].

After obtaining the radial density distribution function, the
frequency moments of the velocity autocorrelation function
were evaluated according to equation (4) in [22] and the self-
diffusion coefficient is expressed as follows:

D = π

2

kBT

M

(
V4 − V 2

2

)3/2

V 3/2
2 (V6V2 − V 2

4 )1/2
(4)

where kB is the Boltzmann constant, T is the temperature, V2,
V4 and V6 are the second, fourth and sixth frequency moments
respectively and M is the mass of the LJ atom.

V2 = 4πρ

3

∫ ∞

0
drg(r)r 2(3B + Ar 2). (5)

The second frequency moment consists of only the
integration of the two-body radial density distribution, but
the fourth and sixth frequency moments consist of not only
the integration of the two-body radial density distribution
function but also the triplet correlation function. In this
work, we call the parts involving only the two-body radial
density distribution function of the fourth and sixth frequency
moments V41 and V61 respectively and the parts involving more
than the two-body radial density distribution function of the
fourth and sixth frequency moments V42 and V62 respectively.

V4 = V41 + V42 (6)

V6 = V61 + V62. (7)

They are defined as follows:

V41 = 8πρ

3M

∫ ∞

0
drg(r)r 2(3B2 + A2r 4 + ABr 2) (8)

V42 = 8π2ρ2

3M
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0
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0
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1
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−1
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V61 = 16πρ
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Table 1. Frequency moments of the velocity autocorrelation
function for various temperatures and densities.

V41 V42 V61 V62

T ∗ ρ∗ V2 (×103) (×103) (×106) (×106) dmax

0.75 0.030 12.807 7.723 0.030 1 16.049 0.522 9
0.75 0.035 20.159 12.347 0.096 7 25.753 1.713 8
0.75 0.040 17.480 10.547 0.057 3 21.912 0.992 6
0.75 0.045 23.170 14.110 0.116 0 29.402 2.037 6
0.75 0.050 31.498 19.351 0.255 0 40.407 4.558 6
0.80 0.030 10.520 6.619 0.015 9 14.531 0.285 10
0.80 0.035 13.159 8.311 0.026 5 18.277 0.476 9
0.80 0.040 17.072 10.890 0.049 5 24.025 0.903 8
0.80 0.045 19.073 12.560 0.067 5 27.713 1.233 7
0.80 0.050 20.753 13.202 0.071 3 29.099 1.298 6
0.80 0.055 21.244 13.484 0.069 8 29.688 1.267 5
0.80 0.060 24.829 15.833 0.101 0 34.911 1.846 5
0.90 0.030 9.202 6.349 0.009 36 15.512 0.182 9
0.90 0.040 12.642 8.748 0.018 1 21.398 0.354 9
0.90 0.050 16.533 11.476 0.032 1 28.089 0.631 8
0.90 0.060 20.291 14.143 0.049 0 34.675 0.970 6
0.90 0.070 23.457 16.350 0.064 6 40.082 1.282 5
0.90 0.080 25.180 17.559 0.069 6 43.047 1.385 4
0.90 0.085 27.256 19.012 0.082 8 46.587 1.651 4
1.00 0.040 11.553 8.705 0.012 1 23.439 0.258 7
1.00 0.050 14.644 11.064 0.019 7 29.835 0.420 7
1.00 0.060 17.937 13.588 0.030 0 36.543 0.642 7
1.00 0.070 21.624 16.410 0.044 7 44.294 0.962 7
1.00 0.080 25.209 19.180 0.061 5 51.819 1.332 6
1.00 0.090 28.148 21.437 0.075 7 57.916 1.644 5
1.00 0.100 29.651 22.571 0.079 4 60.988 1.726 4

Through equations (8)–(11),

r2 = ∣∣r⇀ − r⇀1

∣∣ (12)

B = 1

r

∂U

∂r
(13)

A = 1

r

∂ B

∂r
(14)

C = 1

r

∂ A

∂r
(15)

and β1, β2 and β3 are the cosines of the angles between r⇀ and
r⇀1, r⇀ and r⇀2 and r⇀1 and r⇀2 respectively. The subscripts 1 and
2 on A, B and C imply that the argument of the potential U is
changed to r1 and r2 respectively.

The superposition approximation is used for the triplet
correlation function,

g3(r⇀1, r⇀2) = g(r1)g(r2)g
(∣∣r⇀1 − r⇀2

∣∣) . (16)

In this work we took the reduced unit of both the frequency
moments and the diffusion coefficients and the frequency
moments in units of εMσ−2 for V2, ε2 M2σ−4 for V4 and
ε3 M3σ−6 for V6, and the self-diffusion coefficient is in units
of (εMσ−2)1/2, where M is the mass of the LJ atom. The
accuracy of the above method relies on the model for the
relaxation kernel. In [22] and [24], extensive works have
been done to test the phenomenological form of the memory
function proposed by the group, including the comparisons
of dynamic properties and correlation functions of LJ fluid
by their method and MD simulations [18, 19] for a wide

Figure 1. State points investigated on the phase diagram. The dashed
line stands for the binodal line, the solid line is the spinodal line [8]
and the square points are the state points investigated.

Table 2. Frequency moments of the velocity autocorrelation
function evaluated with two-body correlation functions (D1) and full
correlation functions (D2) for T ∗ = 0.75.

T ∗ ρ∗ D1 D2

0.75 0.030 1.3985 1.4058
0.75 0.035 0.8869 0.8962
0.75 0.040 1.0134 1.0209
0.75 0.045 0.7607 0.7691
0.75 0.050 0.5532 0.5630

range, and the two sets of data corresponded well to each
other. Therefore, we conclude that the method proposed in [22]
recovers the main feature of the memory function form of
the LJ fluid, and it may be applied to the computation of the
dynamic properties of metastable LJ fluid.

3. Results and discussion

Table 1 gives various frequency moments at different
temperatures and densities. In order to show the region being
explored clearly, the state points investigated are placed on a
phase diagram in figure 1. Except for T ∗ = 0.75, for the
same temperature, as density increases, the frequency moments
increase. But for T ∗ = 0.75 anomalous behavior appears;
the frequency moments do not vary monotonically as density
increases. Second, from table 1 we find that the contribution
made by three- and four-body distribution functions to fourth
and sixth frequency moments is not very significant, and for
the purpose of evaluating the self-diffusion coefficients of a
metastable vapor we may neglect them; that is to say, only
considering V2, V41 and V61 is enough. In table 2 we list
the comparison of two sets of self-diffusion constants with full
correlations and two-body correlations only for the T ∗ = 0.75
case. It is apparent that neglecting the high-order correlation
does not affect the final result. The same conclusion also
applies to the other three temperatures.

In figure 2 we plot the self-diffusion coefficients versus
density at four different temperatures studied. For T ∗ = 0.75

3
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Figure 2. Self-diffusion coefficients for T ∗ = 0.75, 0.80, 0.90 and
1.00, respectively.

(This figure is in colour only in the electronic version)

the self-diffusion coefficient does not vary monotonically as
density increases and this corresponds to what happens in
table 1. For T ∗ = 0.80 and 0.90 it is apparent that there
exists a plateau of the self-diffusion coefficient between certain
densities and then it drops to a small value, and for T ∗ = 1.00
the plateau disappears and the curve acts like the stable vapor
or liquid.

We believe that our findings are related to the existence
of clusters formed by atoms in the metastable fluid, and the
current method gives the average self-diffusion coefficients
of atoms belonging to clusters and not belonging to clusters.
Therefore, the number of atoms belonging to clusters and the
density of the metastable fluid competes with each other; this
may be the reason why the plateau appears. This may also be
the reason why the anomalous trend appears for T ∗ = 0.75.

4. Summary

In this work, we have used the memory function formalism and
the frequency moments of the velocity autocorrelation function
method to explore the self-diffusion coefficients of metastable
Lennard-Jones vapor at the reduced temperature from 0.75 to
1.0. We found that for T ∗ = 0.75 the self-diffusion coefficient
does not vary monotonically as density increases, and for T ∗ =
0.80 and 0.90 it is apparent there exists a plateau of the self-
diffusion coefficient between certain densities and it then drops
to a small value, and for T ∗ = 1.00 the plateau disappears. It
is also very interesting to point out that no conclusion has been
reached on the system size of metastable liquid simulation.
For example, in [25] the authors found that the metastable
phase can exist longer the smaller the box is. This is probably
because small simulation systems suppress phase separation,
in which large density fluctuations leading to phase separation

are difficult to create. Thus, small simulation systems allow us
to reach the spinodal more closely. There is no doubt that a
systematic study on the system size of simulation is necessary,
but so far no work has been seen dedicated to this point.
However, [8] reported a successful work on the simulation
of the metastable LJ system; the particles involved in their
simulation are of the order of several thousands, and in this
work the same order of particle numbers is used in order to
avoid suppression phase separation. This is our preliminary
work and in the future the work will be extended to the liquid
side of the metastable fluid as well as to the other two most
visited dynamic properties, viscosity and thermal conductivity.
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